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BeeGFS is one of the leading parallel cluster file systems, developed with a strong focus on performance and
designed for easy installation and management.

The Arm architecture has made its way from mobile processors to become a strong alternative to the
traditional x86_64 architecture in the desktop and server computing market.

Performance results show that BeeGFS is able to fully utilize the hardware and to saturate the network on a
setup with four server machines and six client machines, all on a 100 Gb/s InfiniBand connection and using
Arm CPUs.

With the gperf benchmark, we determine a baseline for the maximum network bandwidth of 48.0 GB/s
(12.0 GB/s per storage server). Using the 10zone benchmark tool for evaluating sequential I/0, we reach
47.0 GB/s for read and 45.2 GB/s for write accesses, corresponding to 97.9% and 94.2% of the maximum
network throughput. With the IOR benchmark, we also show that we are able to reach the maximum
bandwidth capabilities of one storage target (mapped to one NVMe drive) with a low thread count of 4 and
24 for write and read accesses, respectively.

Current Arm AArch64 cores for servers are thus capable of taking full advantage of InfiniBand networks and
NVMe drives together with BeeGFS on both client and storage nodes.

ThinkParQ GmbH strives to create and develop the fastest, most flexible, and most stable solutions for every
performance-oriented environment. Established in 2014 as a spinoff from the Fraunhofer Center for High-
Performance Computing, ThinkParQ drives the research and development of BeeGFS, and works closely
with system integrators to create and deliver turn-key solutions.

Founded in 1987, Huawei is a leading global provider of information and communications technology (ICT)
infrastructure and smart devices. Huawei has approximately 197,000 employees and operates in over 170
countries and regions, serving more than three billion people around the world. Huawei is a private
company wholly owned by its employees.

Huawei’s mission is to bring digital to every person, home and organization for a fully connected, intelligent
world. Huawei strives for creating value for customers, ensuring secure and stable network operations,
promoting industry development through joint innovation with customers and partners, and enabling
sustainable development.
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BeeGFS is a software-defined storage solution based on the POSIX file system interface, which means
applications do not have to be rewritten or modified to take advantage of BeeGFS. A more elaborate
overview can be found in [1]. BeeGFS clients accessing the data inside the file system, communicate with
the storage servers via network, via any TCP/IP based connection or via RDMA-capable networks, like
InfiniBand (I1B), Omni-Path (OPA) and RDMA over Converged Ethernet (RoCE). This is similar for the
communication between the BeeGFS servers. Furthermore, BeeGFS is a parallel file system. By transparently
spreading user data across multiple servers and increasing the number of servers and disks in the system,
the capacity and performance of all disks and all servers is aggregated in a single namespace. In this way,
the file system performance and capacity can easily be scaled to the level required for the specific use case,
also while the system is in production later.

BeeGFS separates metadata from user file chunks on the servers. The file chunks are provided by the
storage service and contain the data that users want to store (i.e. the user file contents), whereas the
metadata is the “data about data”, such as access permissions, file size and the information about how the
user file chunks are distributed across the storage servers. A client can talk directly to the storage service to
store or retrieve the file chunks as soon as the metadata for a specific file or directory are received. This
means, there is no further involvement of the metadata service in read or write operations.

The BeeGFS architecture is composed of four main components:

e Management service: A registry and watchdog for all other services

e Storage service: Stores the distributed user file contents

e Metadata service: Stores access permissions and striping information
e Client module: Mounts the file system to access the stored data

It is possible to run multiple instances with any BeeGFS service on the same machine. These instances can
be part of the same BeeGFS file system instance or belong to different file system instances.

The underlying file system in which the BeeGFS services store their data are called management, metadata,
or storage targets. While the BeeGFS management and metadata service each use a single target per
service instance, the storage service supports one or multiple storage targets for a single storage service
instance.

The metadata service is a scale-out service, meaning there can be one or many metadata services in a
BeeGFsS file system. Each metadata service is responsible for its exclusive fraction of the global namespace,
so that having more metadata servers improves the overall system performance. Usually, a metadata target
is an ext4 file system at low access latency, e.g., on a flash drive, to improve the responsiveness of the file
system.

Similar to the metadata service, the storage service is based on a scale-out design. That means, you can
have one or multiple storage services per BeeGFS file system instance, such that each storage service adds
more capacity and especially also more performance to the file system. A storage service instance has one
or multiple storage targets. The storage service works with any local Linux POSIX file system.

The Arm architecture has made its way from mobile processors to become a strong alternative to the
traditional x86_64 architecture in the desktop and server computing market. With its high efficiency and
large core counts, it is well suited for highly parallel workloads, making it a suitable choice for compute
nodes, metadata and storage servers.

In the following sections, we will evaluate the use of the BeeGFS file system on an Arm AArch64 compute
cluster that represents a reasonable installation for R&D labs and small-scale high performance systems. We
consider this study as an enablement effort to position BeeGFS on Arm as a forthcoming option to give
users more platform choices, as BeeGFS can reach network limits and competitive performance on Arm
CPU-enabled systems as well.
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Hardware Configuration

Server

Huawei TaiShan 200-model 2280

Compute

HiSilicon Kunpeng 920-5250 CPU: 48 cores at 2.6 GHz clock freq., 48
MB LLC, AArch64 Armv8.2-A core architecture, 150W TDP
Each CPU organized in two NUMA domains (24 cores for each domain),
which reflects the chiplet design of the Kunpeng CPU [2]
Direct support for SAS/SATA 3.0 interfaces (up to 16 channels)
Direct support for PCle 4.0 (up to 40 lanes)

2 CPUs per node (4 NUMA domains per node)

Memory

Eight memory channels per CPU (4 channels per NUMA domain)
One 16 GB DDR4-2666 RDIMM per channel
256 GB total capacity (16 channels with one 16 GB DIMM each)

Storage

Client node:

1x Huawei ES3000 V5 800 GB SAS SSD system disk

Storage node:

1x Huawei ES3000 V5 800 GB SAS SSD system disk

10x NVMe SSD Huawei ES3600P V6 with 3.2 TB capacity and PCle 4.0

x4 connectivity each

Network

Mellanox MT27800 Family ConnectX-5 card, FDR/EDR IB 100 Gb/s, PCle

3.0x16

Firmware

CPLD version 5.14, BIOS version 1.38

Front panel of chassis for 8 x 2.5-inch SAS/SATA
drives and 12 x 2.5-inch NVMe SSDs

NVMe (2.5")
NVMe (2.5")
NVMe (2.5")
NVMe (2.5)

) \ J\ J

PCle 3.0 x24 Y PCle 3.0 x24
(front panel chassis) : (front panel chassis)

1

1
RAID |_ — T T
controller 1 | PCled.0x24 I PCle 4.0 x24

PCledoxs 1 1 1
CPU 1 CPU 2 PCle 4.0 x16

Kunpeng Kunpeng ====—=====
920-5250 | Coherent | 920-5250
Serdes x 4 I interconnect I | Serdes x 4

| |
Flex 10 1 16x DDR4| | 16x DDR4 Flex 102
|ETH Card DIMMs DIMMs ETH Card
4x25GE ! ! 4x25GE

Organization of a TaiShan 200-model 2280 storage server
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Notes

e The chassis type of the selected server that can host up to 12 NVMe drives supports PCle 3 speeds to
the backplane. The CPU itself supports PCle 4.

e 6 NVMe drives are connected to CPU 1, whereas 4 NVMe drives and the IB NIC are connected to CPU 2.

e The node management network is a separate Ethernet network and not shown.

Topology

10 TaiShan nodes (servers 1 to 10) are available in total, of which 4 are storage nodes (servers 1 to 4). All
nodes are connected to the same EDR 36-port non-blocking Mellanox MSB 7700 InfiniBand network switch.
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Software Configuration

File system BeeGFS 7.2.4 using XFS for storage and ext4 for metadata

Operating system | Storage servers 1 to 4:
e Cent0OS 8.4,4.18.0-305.17.1

Client nodes (servers 5 to 10):

e (CentOS 8.4, kernel 5.4.173

e Arm PAN feature disabled (Privileged Access Never)

* echo 1 > /sys/block/sda/queue/rq affinity

e Upgraded from default kernel 4.18 to kernel 5.4 to have full support
for queued spinlocks on AArch64 for better performance of high-
contended locking

MPI stack OpenMPI 4.1.1

Standard tests Linux gperf version 0.4.11 command to characterize network limits

between nodes

e BeeGFS StorageBench to determine maximum performance on storage
targets

. M[?Test version 3.4.0 stand-alone test for metadata performance
IOR version 3.4.0 stand-alone test of the performance of a parallel file
system with sequential read/write accesses of many clients to one file
(aka N-1)

e |Ozone version 3.493 and fio 3.19 stand-alone tests of the
performance of a parallel file system with sequential and random
read/write accesses of many clients to many files (aka N-N)

BeeGFS Configuration
We employ servers 1 to 4 for management, metadata and storage, and servers 5 to 10 for client mounts,
respectively. The 4 storage servers contain 10 NVMe drives each, as sketched in the above figure. Each

NVMe drive is partitioned to provide one storage and one metadata target at a 27:1 capacity ratio, i.e., less
than 4% of the capacity is needed for metadata.

Management service

The BeeGFS management service is running on server 1.

Storage services

We allocate one storage service to each NVMe drive and take advantage of the connectivity of drives to
NUMA domains of the CPUs. As a result, 3 services are mapped to each of the 2 NUMA domains of CPU 1,
whereas 2 services are implemented by each of the 2 NUMA domains of CPU 2. Overall, this leads to 40

storage targets supported by 40 storage services distributed over 4 storage servers.
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Metadata services

We use the NUMA domains of CPU 2 (NUMA 2 and 3) to implement 10 metadata services on each of the 4
storage servers, each service responsible for 1 metadata target. Each of the 2 NUMA domains of CPU 2 thus

runs 5 metadata services. Overall, this leads to 40 metadata targets supported by 40 metadata services
distributed on 4 storage servers. We map metadata services to the NUMA domains of CPU 2 to reduce
overall latency since the InfiniBand NIC is connected to CPU 2 as well. In summary, the NUMA mapping of
metadata and storage services for all 4 storage servers looks like this:

Server1/2/3/4

NUMA 1

stor0, stor1, stor2

NUMA 2

stor3, stor4, stor5

NUMA 3

meta0, meta1, meta2, metab, meta7, stor6, stor7

NUMA 4

meta3, meta4, metab, meta8, meta9, stor8, stor9

Client mounts

We employ servers 5 to 10 as client nodes. The BeeGFS client code is patched with one enhancement
related to Arm PAN functionality released recently with BeeGFS 7.3.0.

BeeGFS parameters

The following BeeGFS tuning options are used:

connMaxInternodeNum: set to 128 for metadata and 96 for storage on storage nodes, 96 on client

nodes

stripe —chunksize: set to “1m” (1 MiB') for IOR, I0zone and MDtest runs

tuneNumWorkers: set to 12 for metadata and storage

tuneTargetChooser: set to “roundrobin” for the metadata configuration

‘Binary notation: MiB = 2 Byte = 1024” Byte, GiB = 2* Byte = 1024’ Byte
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In this section, we assess the storage and metadata performance of the cluster configuration described in
the previous section, including sequential and random I/0 tests.

In the following, we specify throughput and bandwidth values in decimal notation’, whereas capacities and
sizes are specified in binary notation'. All presented results are averaged over three runs. We access the
NVMe drives in direct I/0 mode.

Basic network and NVMe drive characteristics

Network performance: We employ gperf to determine the one-way streaming bandwidth between one
client and one server node. gperf returns 12.0 GB/s, as expected for an IB 100 Gb/s connection.

NVMe drive performance with fio: Based on PCle 3 x4 connectivity, fio reports sequential write bandwidth
of 3,060 MB/s and 3,573 MB/s for read accesses; random write IOPS reach 300k, and read IOPS 825k.

We verified the sequential write and read bandwidth values of one NVMe drive with BeeGFS StorageBench
as well and achieved the same level of peak performance. This degree of performance approaches the
theoretical limit of the underlying PCle 3 x4 connection (4 GB/s) of the server chassis.

I0zone N-N test, sequential read and write performance

We measure the performance of reads and writes with N threads to N files with 10zone, driven by the 6
client nodes. All 40 storage targets are employed. We vary the number of client tasks as a rational fraction/
multiple of the core count of one client node (96 cores per node).

We rely on the following I0zone parameter settings to specify a record size of 1 MiB, a file size of 10 GiB and
the use of direct I/0O:

iozone -1 $test -w -c¢c -0 -I -r 1Im -s 10g
The following figure shows the results for sequential accesses.

I0zone sequential accesses, N-N
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read GB/s 1.1 20 43 63 124 228 368 430 465 470 47.0

Network Max 48.0 48.0 480 480 480 480 480 48.0 480 480 480
rel write [%] 2.0 4.4 9.4 15.8 317 579 844 86.7 92.9 89.4 94.2
rel read [%] 23 4.1 9.0 131 258 475 76.7 89.5 96.9 97.9 97.9

Number of concurrent threads

I0zone N-N test, sequential accesses with 40 targets

’Decimal notation: MB = 10° Byte = 1000° Byte, GB = 10’ Byte = 1000 Byte
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For the N-to-N test, we see a steady increase in performance up to a task count of 48 where the
improvement flattens out, as we come near the limits of the InfiniBand network to the 4 storage servers (4 x
100 Gb/s). Lower task counts benefit from lower latency of posted-write operations over PCle compared to
non-posted reads.

I0zone N-N test, random read and write performance
The following figure shows the results for random accesses characterized by the number of achievable I/0

operations using one target. For this test, we reduce the record size to 4 KiB (with the “-r 4k” 10zone
option).

IOzone random accesses, N-N
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Number of concurrent threads

I0zone N-N test, random accesses with one target

We can recognize a steady increase in performance up to 384 tasks for random write accesses, after which
the improvement flattens out. Using 576 tasks marks the peak for write operations, reaching a score of
4917 k-10PS, whereas read accesses reach 3504 k-IOPS at 768 tasks. For random accesses, we notice that
the read performance saturates below the write performance. The likely reason for this behavior is the lack
of further concurrency that can be sustained by the 6 client nodes. Significant higher thread counts would
be needed to compensate for the higher round-trip latency for read accesses. The 6 client nodes start to be
limited by context switches for 576 threads (6x 96-cores on the client nodes) and beyond.

IOR N-1 test, sequential read and write performance

We measure the performance of sequential reads and writes with N threads to a single shared file with IOR,
driven by the 6 client nodes.

To start with, we only use one storage target to check the feasible performance of one NVMe drive. We vary
the number of client tasks as a rational fraction/multiple of the core count of one client node (96 cores per
client node). We call the underlying ior command line to specify a block size of 8 MiB and a transfer size of
16 GiB:

ior -w -r -i 3 --posix.odirect -t 8m -b 16g -g -d 3 -e -E -0 $outfile -s 1
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IOR write test with 1 target, sequential accesses
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IOR read test with 1 target, sequential accesses
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IOR N-1 test, sequential accesses with one target
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configuration) at around 3.1 GB/s, and 24 tasks for read at about 3.6 GB/s. Since read operations on PCle
are non-posted operations requiring a completion packet, more tasks are needed to compensate for the
higher latency compared to posted write transactions. Note that the reference baseline was determined

with a different test program (results by fio, see subsection on basic characteristics). This is why utilization
values slightly above 100% appear in the graph.

We continue with using all available 40 storage targets, using the same underlying ior command as before.
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IOR N-1 test, sequential accesses with 40 targets

evaluation of one target, we know that the 40 storage targets could sustain more bandwidth than the

InfiniBand network.
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As with the single target test, we see that write accesses perform better than read accesses up to 6 tasks,
which equals the number of client nodes. The slope of the curve flattens out, and the maximum of 16.6
GB/s for write accesses (meaning 34.5% bandwidth utilization) is measured for 48 tasks.

We attribute the difference between read and write bandwidth for higher task counts to serialization effects
in the client with several processes accessing the same inode. Increasing the number of client nodes for this
IOR N-1 test would thus be the means to improve bandwidth for write accesses and narrow the gap
between read and write performance.

MDtest metadata performance

To complement the 10zone results for random accesses and characterize performance in more detail, we
stress BeeGFS’ metadata performance with MDtest.

We test the performance with 10 metadata targets on each server. We rely on the following underlying
command line parameters to fix the number of files per directory to 1024 and again use direct I/O mode:

mdtest -1 3 --posix.odirect -b $directories -z 1 -L -I 1024 -y -u -t -F

The number of directories is chosen depending on the number of tasks, such that always 3,145,728 files are
written (1024 x 384 x 8). In this way, we make sure that a) even with 384 tasks, each task creates a number
of directories (8 in this case), and b) the same number of files is processed across tests to require the same
number of total IOPS. For 576 tasks, we reduce the total number of files slightly to 2,949,120 (1024 x 576 x
5).

The following figure shows the metadata performance measured by MDtest for 40metadata targets.

MDtest

1200

1000

800

%]
o
o 600
~

400

200

. m—

1 2 4 6 12 24 48 9% 192 384 576
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file read k-IOPS 84 16.8 33.2 49.0 88.1 167.5 3069 3475 2913 295.7 276.1
«==@==file creation k-IOPS 5.2 10.5 20.6 30.6 56.1 104.8 188.2 303.1 266.7 2914 2741
Number of concurrent threads

MDtest metadata performance with 40 targets

For MDtest, performance improves steadily up to 96 tasks for all operations. Removal operations stay at the
same level of performance beyond 96 tasks, whereas all other operation types drop in performance.

Further optimizing metadata performance for MDtest
In order to reduce access latency to metadata targets further, we only employ the 4 metadata targets of the

4 NVMe drives connected to CPU 2 for each server. As a result, all metadata operations are processed by
the CPU that is directly connected to the drives and that has direct access to the NIC for lowest latency.
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Compared to the baseline setup, peak removal IOPS increase by about 40%, stat and read IOPS improve by
55% and 112%, and maximum creation IOPS increase by 71%. We do recognize higher variability of results
for stat operations at high task counts. However, the shapes of the curves for all operation types appear
smoother than for the baseline setup. A more deterministic and lower response time for metadata
operations serviced only by CPU 2, coming with a reduction of the traffic between the two CPUs, highlights
the performance potential of workload-specific NUMA mappings to reduce latency for communication even
on-chip.

MDtest
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==@-=creation k-lOPS 5.4 10.5 20.5 30.5 56.5 107.5 2015 347.1 4591 5009 519.0

Number of concurrent threads

Refined setup: MDtest metadata performance, reduced number of metadata services

Finally, employing only one dedicated NVMe drive per storage server for metadata, thus utilizing 10% of the
capacity for metadata, led to lower performance than using the distributed partitions evaluated in this
study.

This White Paper puts emphasis on evaluating BeeGFS on the Arm CPU architecture for the first time. With
this initial evaluation we have shown that current Arm AArch64 cores for servers can easily max out the
performance of the InfiniBand network and the bandwidth of NVMe drives together with BeeGFS on both
client and storage nodes. We also shed light on the mapping of metadata services onto on-chip NUMA
domains to take advantage of a modern chiplet-based CPU architecture. If the nodes are augmented with
even better NICs (or more NICs) and more client nodes are employed, the presented performance results
will scale up further.

BeeGFS 7.3.0 release is fully compatible with PAN, Armv8’s “Privileged Access Never” (PAN) feature. Initial
tests show no significant change in performance to support this additional layer of security. We switched

the PAN feature off for the presented results in this paper.

In this way, we are looking forward to the Arm ecosystem providing complementary solutions for Arm and
BeeGFS users in the future.
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