
WHITE PAPER

Performance Evalua�on of the BeeGFS
File System on the Arm AArch64
Architecture
May, 2022

CONTENTS

EXECUTIVE SUMMARY ...3

ABOUT THINKPARQ ...3

ABOUT HUAWEI ...3

INTRODUCTION ...4

EVALUATION SETUP ...5

PERFORMANCE EVALUATION ...9

CONCLUDING REMARKS ..13

2 White Paper I Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture

EXECUTIVE SUMMARY
BeeGFS is one of the leading parallel cluster file systems, developed with a strong focus on performance and
designed for easy installa�on and management.

The Arm architecture has made its way from mobile processors to become a strong alterna�ve to the
tradi�onal x86_64 architecture in the desktop and server compu�ng market.

Performance results show that BeeGFS is able to fully u�lize the hardware and to saturate the network on a
setup with four server machines and six client machines, all on a 100 Gb/s InfiniBand connec�on and using
Arm CPUs.

With the qperf benchmark, we determine a baseline for the maximum network bandwidth of 48.0 GB/s
(12.0 GB/s per storage server). Using the IOzone benchmark tool for evalua�ng sequen�al I/O, we reach
47.0 GB/s for read and 45.2 GB/s for write accesses, corresponding to 97.9% and 94.2% of the maximum
network throughput. With the IOR benchmark, we also show that we are able to reach the maximum
bandwidth capabili�es of one storage target (mapped to one NVMe drive) with a low thread count of 4 and
24 for write and read accesses, respec�vely.

Current Arm AArch64 cores for servers are thus capable of taking full advantage of InfiniBand networks and
NVMe drives together with BeeGFS on both client and storage nodes.

ABOUT THINKPARQ
ThinkParQ GmbH strives to create and develop the fastest, most flexible, and most stable solu�ons for every
performance-oriented environment. Established in 2014 as a spinoff from the Fraunhofer Center for High-
Performance Compu�ng, ThinkParQ drives the research and development of BeeGFS, and works closely
with system integrators to create and deliver turn-key solu�ons.

ABOUT HUAWEI
Founded in 1987, Huawei is a leading global provider of informa�on and communica�ons technology (ICT)
infrastructure and smart devices. Huawei has approximately 197,000 employees and operates in over 170
countries and regions, serving more than three billion people around the world. Huawei is a private
company wholly owned by its employees.

Huawei’s mission is to bring digital to every person, home and organiza�on for a fully connected, intelligent
world. Huawei strives for crea�ng value for customers, ensuring secure and stable network opera�ons,
promo�ng industry development through joint innova�on with customers and partners, and enabling
sustainable development.

Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture I White Paper 3

INTRODUCTION
BeeGFS is a so�ware-defined storage solu�on based on the POSIX file system interface, which means
applica�ons do not have to be rewri�en or modified to take advantage of BeeGFS. A more elaborate
overview can be found in [1]. BeeGFS clients accessing the data inside the file system, communicate with
the storage servers via network, via any TCP/IP based connec�on or via RDMA-capable networks, like
InfiniBand (IB), Omni-Path (OPA) and RDMA over Converged Ethernet (RoCE). This is similar for the
communica�on between the BeeGFS servers. Furthermore, BeeGFS is a parallel file system. By transparently
spreading user data across mul�ple servers and increasing the number of servers and disks in the system,
the capacity and performance of all disks and all servers is aggregated in a single namespace. In this way,
the file system performance and capacity can easily be scaled to the level required for the specific use case,
also while the system is in produc�on later.

BeeGFS separates metadata from user file chunks on the servers. The file chunks are provided by the
storage service and contain the data that users want to store (i.e. the user file contents), whereas the
metadata is the “data about data”, such as access permissions, file size and the informa�on about how the
user file chunks are distributed across the storage servers. A client can talk directly to the storage service to
store or retrieve the file chunks as soon as the metadata for a specific file or directory are received. This
means, there is no further involvement of the metadata service in read or write opera�ons.

The BeeGFS architecture is composed of four main components:

• Management service: A registry and watchdog for all other services

• Storage service: Stores the distributed user file contents

• Metadata service: Stores access permissions and striping informa�on

• Client module: Mounts the file system to access the stored data

It is possible to run mul�ple instances with any BeeGFS service on the same machine. These instances can
be part of the same BeeGFS file system instance or belong to different file system instances.

The underlying file system in which the BeeGFS services store their data are called management, metadata,
or storage targets. While the BeeGFS management and metadata service each use a single target per
service instance, the storage service supports one or mul�ple storage targets for a single storage service
instance.

The metadata service is a scale-out service, meaning there can be one or many metadata services in a
BeeGFS file system. Each metadata service is responsible for its exclusive frac�on of the global namespace,
so that having more metadata servers improves the overall system performance. Usually, a metadata target
is an ext4 file system at low access latency, e.g., on a flash drive, to improve the responsiveness of the file
system.

Similar to the metadata service, the storage service is based on a scale-out design. That means, you can
have one or mul�ple storage services per BeeGFS file system instance, such that each storage service adds
more capacity and especially also more performance to the file system. A storage service instance has one
or mul�ple storage targets. The storage service works with any local Linux POSIX file system.

The Arm architecture has made its way from mobile processors to become a strong alterna�ve to the
tradi�onal x86_64 architecture in the desktop and server compu�ng market. With its high efficiency and
large core counts, it is well suited for highly parallel workloads, making it a suitable choice for compute
nodes, metadata and storage servers.

In the following sec�ons, we will evaluate the use of the BeeGFS file system on an Arm AArch64 compute
cluster that represents a reasonable installa�on for R&D labs and small-scale high performance systems. We
consider this study as an enablement effort to posi�on BeeGFS on Arm as a forthcoming op�on to give
users more pla�orm choices, as BeeGFS can reach network limits and compe��ve performance on Arm
CPU-enabled systems as well.

4 White Paper Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture

EVALUATION SETUP

Hardware Configura�on

Server Huawei TaiShan 200-model 2280

Compute • HiSilicon Kunpeng 920-5250 CPU: 48 cores at 2.6 GHz clock freq., 48
MB LLC, AArch64 Armv8.2-A core architecture, 150W TDP

• Each CPU organized in two NUMA domains (24 cores for each domain),
which reflects the chiplet design of the Kunpeng CPU [2]

• Direct support for SAS/SATA 3.0 interfaces (up to 16 channels)
• Direct support for PCIe 4.0 (up to 40 lanes)
• 2 CPUs per node (4 NUMA domains per node)

Memory • Eight memory channels per CPU (4 channels per NUMA domain)
• One 16 GB DDR4-2666 RDIMM per channel
• 256 GB total capacity (16 channels with one 16 GB DIMM each)

Storage Client node:
• 1x Huawei ES3000 V5 800 GB SAS SSD system disk

Storage node:
• 1x Huawei ES3000 V5 800 GB SAS SSD system disk
• 10x NVMe SSD Huawei ES3600P V6 with 3.2 TB capacity and PCIe 4.0

x4 connec�vity each

Network Mellanox MT27800 Family ConnectX-5 card, FDR/EDR IB 100 Gb/s, PCIe
3.0 x16

Firmware CPLD version 5.14, BIOS version 1.38

Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture I White Paper 5

Organiza�on of a TaiShan 200-model 2280 storage server

Notes

• The chassis type of the selected server that can host up to 12 NVMe drives supports PCIe 3 speeds to
the backplane. The CPU itself supports PCIe 4.

• 6 NVMe drives are connected to CPU 1, whereas 4 NVMe drives and the IB NIC are connected to CPU 2.

• The node management network is a separate Ethernet network and not shown.

Topology

10 TaiShan nodes (servers 1 to 10) are available in total, of which 4 are storage nodes (servers 1 to 4). All
nodes are connected to the same EDR 36-port non-blocking Mellanox MSB 7700 InfiniBand network switch.

6 White Paper I Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture

So�ware Configura�on

BeeGFS Configura�on

We employ servers 1 to 4 for management, metadata and storage, and servers 5 to 10 for client mounts,
respec�vely. The 4 storage servers contain 10 NVMe drives each, as sketched in the above figure. Each
NVMe drive is par��oned to provide one storage and one metadata target at a 27:1 capacity ra�o, i.e., less
than 4% of the capacity is needed for metadata.

Management service

The BeeGFS management service is running on server 1.

Storage services

We allocate one storage service to each NVMe drive and take advantage of the connec�vity of drives to
NUMA domains of the CPUs. As a result, 3 services are mapped to each of the 2 NUMA domains of CPU 1,
whereas 2 services are implemented by each of the 2 NUMA domains of CPU 2. Overall, this leads to 40
storage targets supported by 40 storage services distributed over 4 storage servers.

Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture I White Paper 7

File system BeeGFS 7.2.4 using XFS for storage and ext4 for metadata

Opera�ng system Storage servers 1 to 4:
• CentOS 8.4, 4.18.0-305.17.1

Client nodes (servers 5 to 10):
• CentOS 8.4, kernel 5.4.173
• Arm PAN feature disabled (Privileged Access Never)
• echo 1 > /sys/block/sda/queue/rq_affinity
• Upgraded from default kernel 4.18 to kernel 5.4 to have full support

for queued spinlocks on AArch64 for be�er performance of high-
contended locking

MPI stack OpenMPI 4.1.1

Standard tests • Linux qperf version 0.4.11 command to characterize network limits
between nodes

• BeeGFS StorageBench to determine maximum performance on storage
targets

• MDTest version 3.4.0 stand-alone test for metadata performance
• IOR version 3.4.0 stand-alone test of the performance of a parallel file

system with sequen�al read/write accesses of many clients to one file
(aka N-1)

• IOzone version 3.493 and fio 3.19 stand-alone tests of the
performance of a parallel file system with sequen�al and random
read/write accesses of many clients to many files (aka N-N)

Metadata services

We use the NUMA domains of CPU 2 (NUMA 2 and 3) to implement 10 metadata services on each of the 4
storage servers, each service responsible for 1 metadata target. Each of the 2 NUMA domains of CPU 2 thus
runs 5 metadata services. Overall, this leads to 40 metadata targets supported by 40 metadata services
distributed on 4 storage servers. We map metadata services to the NUMA domains of CPU 2 to reduce
overall latency since the InfiniBand NIC is connected to CPU 2 as well. In summary, the NUMA mapping of
metadata and storage services for all 4 storage servers looks like this:

Client mounts

We employ servers 5 to 10 as client nodes. The BeeGFS client code is patched with one enhancement
related to Arm PAN func�onality released recently with BeeGFS 7.3.0.

BeeGFS parameters

The following BeeGFS tuning op�ons are used:

• connMaxInternodeNum: set to 128 for metadata and 96 for storage on storage nodes, 96 on client
nodes

• stripe –chunksize: set to “1m” (1 MiB) for IOR, IOzone and MDtest runs

• tuneNumWorkers: set to 12 for metadata and storage

• tuneTargetChooser: set to “roundrobin” for the metadata configura�on

220

1

Server 1 / 2 / 3 / 4

NUMA 1 stor0, stor1, stor2
NUMA 2 stor3, stor4, stor5
NUMA 3 meta0, meta1, meta2, meta6, meta7, stor6, stor7
NUMA 4 meta3, meta4, meta5, meta8, meta9, stor8, stor9

8 White Paper I Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture

Binary nota�on: MiB = 2 Byte = 1024 Byte, GiB = 2 Byte = 1024 Byte1 30 3

PERFORMANCE EVALUATION
In this sec�on, we assess the storage and metadata performance of the cluster configura�on described in
the previous sec�on, including sequen�al and random I/O tests.

In the following, we specify throughput and bandwidth values in decimal nota�on , whereas capaci�es and
sizes are specified in binary nota�on . All presented results are averaged over three runs. We access the
NVMe drives in direct I/O mode.

Basic network and NVMe drive characteris�cs

Network performance: We employ qperf to determine the one-way streaming bandwidth between one
client and one server node. qperf returns 12.0 GB/s, as expected for an IB 100 Gb/s connec�on.

NVMe drive performance with fio: Based on PCIe 3 x4 connec�vity, fio reports sequen�al write bandwidth
of 3,060 MB/s and 3,573 MB/s for read accesses; random write IOPS reach 300k, and read IOPS 825k.

We verified the sequen�al write and read bandwidth values of one NVMe drive with BeeGFS StorageBench
as well and achieved the same level of peak performance. This degree of performance approaches the
theore�cal limit of the underlying PCIe 3 x4 connec�on (4 GB/s) of the server chassis.

IOzone N-N test, sequen�al read and write performance

We measure the performance of reads and writes with N threads to N files with IOzone, driven by the 6
client nodes. All 40 storage targets are employed. We vary the number of client tasks as a ra�onal frac�on/
mul�ple of the core count of one client node (96 cores per node).

We rely on the following IOzone parameter se�ngs to specify a record size of 1 MiB, a file size of 10 GiB and
the use of direct I/O:

iozone -i $test -w -c -O -I -r 1m -s 10g

The following figure shows the results for sequen�al accesses.

IOzone N-N test, sequen�al accesses with 40 targets

Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture I White Paper 9

Decimal nota�on: MB = 10 Byte = 1000 Byte, GB = 10 Byte = 1000 Byte

1

2

2 6 2 9 3

Network limit [48 GB/s]

For the N-to-N test, we see a steady increase in performance up to a task count of 48 where the
improvement fla�ens out, as we come near the limits of the InfiniBand network to the 4 storage servers (4 x
100 Gb/s). Lower task counts benefit from lower latency of posted-write opera�ons over PCIe compared to
non-posted reads.

IOzone N-N test, random read and write performance

The following figure shows the results for random accesses characterized by the number of achievable I/O
opera�ons using one target. For this test, we reduce the record size to 4 KiB (with the “-r 4k” IOzone
op�on).

IOzone N-N test, random accesses with one target

We can recognize a steady increase in performance up to 384 tasks for random write accesses, a�er which
the improvement fla�ens out. Using 576 tasks marks the peak for write opera�ons, reaching a score of
4917 k-IOPS, whereas read accesses reach 3504 k-IOPS at 768 tasks. For random accesses, we no�ce that
the read performance saturates below the write performance. The likely reason for this behavior is the lack
of further concurrency that can be sustained by the 6 client nodes. Significant higher thread counts would
be needed to compensate for the higher round-trip latency for read accesses. The 6 client nodes start to be
limited by context switches for 576 threads (6x 96-cores on the client nodes) and beyond.

IOR N-1 test, sequen�al read and write performance

We measure the performance of sequen�al reads and writes with N threads to a single shared file with IOR,
driven by the 6 client nodes.

To start with, we only use one storage target to check the feasible performance of one NVMe drive. We vary
the number of client tasks as a ra�onal frac�on/mul�ple of the core count of one client node (96 cores per
client node). We call the underlying ior command line to specify a block size of 8 MiB and a transfer size of
16 GiB:

ior -w -r -i 3 --posix.odirect -t 8m -b 16g -g -d 3 -e -E -o $outfile -s 1

10 White Paper I Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture

.

IOR N-1 test, sequen�al accesses with one target

4 tasks are needed to reach the write performance limit of one target (i.e, one NVMe drive for our
configura�on) at around 3.1 GB/s, and 24 tasks for read at about 3.6 GB/s. Since read opera�ons on PCIe
are non-posted opera�ons requiring a comple�on packet, more tasks are needed to compensate for the
higher latency compared to posted write transac�ons. Note that the reference baseline was determined
with a different test program (results by fio, see subsec�on on basic characteris�cs). This is why u�liza�on
values slightly above 100% appear in the graph.

We con�nue with using all available 40 storage targets, using the same underlying ior command as before.

IOR N-1 test, sequen�al accesses with 40 targets

IOR N-1 test, sequen�al accesses with 40 targets

We see a steady increase in read bandwidth up to 48 tasks. The maximum of 48.1 GB/s is reached for 192
tasks, represen�ng 100% bandwidth u�liza�on of the network to the 4 storage servers. Based on the
evalua�on of one target, we know that the 40 storage targets could sustain more bandwidth than the
InfiniBand network.

Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture I White Paper 11

Drive limit, FIO [3,060 MB/s]
Drive limit, FIO [3,573 MB/s]

Network limit [48 GB/s]

As with the single target test, we see that write accesses perform be�er than read accesses up to 6 tasks,
which equals the number of client nodes. The slope of the curve fla�ens out, and the maximum of 16.6
GB/s for write accesses (meaning 34.5% bandwidth u�liza�on) is measured for 48 tasks.

We a�ribute the difference between read and write bandwidth for higher task counts to serializa�on effects
in the client with several processes accessing the same inode. Increasing the number of client nodes for this
IOR N-1 test would thus be the means to improve bandwidth for write accesses and narrow the gap
between read and write performance.

MDtest metadata performance

To complement the IOzone results for random accesses and characterize performance in more detail, we
stress BeeGFS’ metadata performance with MDtest.

We test the performance with 10 metadata targets on each server. We rely on the following underlying
command line parameters to fix the number of files per directory to 1024 and again use direct I/O mode:

mdtest -i 3 --posix.odirect -b $directories -z 1 -L -I 1024 -y -u -t -F

The number of directories is chosen depending on the number of tasks, such that always 3,145,728 files are
wri�en (1024 x 384 x 8). In this way, we make sure that a) even with 384 tasks, each task creates a number
of directories (8 in this case), and b) the same number of files is processed across tests to require the same
number of total IOPS. For 576 tasks, we reduce the total number of files slightly to 2,949,120 (1024 x 576 x
5).

The following figure shows the metadata performance measured by MDtest for 40metadata targets.

MDtest metadata performance with 40 targets

For MDtest, performance improves steadily up to 96 tasks for all opera�ons. Removal opera�ons stay at the
same level of performance beyond 96 tasks, whereas all other opera�on types drop in performance.

Further op�mizing metadata performance for MDtest

In order to reduce access latency to metadata targets further, we only employ the 4 metadata targets of the
4 NVMe drives connected to CPU 2 for each server. As a result, all metadata opera�ons are processed by
the CPU that is directly connected to the drives and that has direct access to the NIC for lowest latency.

12 White Paper I Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture

Compared to the baseline setup, peak removal IOPS increase by about 40%, stat and read IOPS improve by
55% and 112%, and maximum crea�on IOPS increase by 71%. We do recognize higher variability of results
for stat opera�ons at high task counts. However, the shapes of the curves for all opera�on types appear
smoother than for the baseline setup. A more determinis�c and lower response �me for metadata
opera�ons serviced only by CPU 2, coming with a reduc�on of the traffic between the two CPUs, highlights
the performance poten�al of workload-specific NUMA mappings to reduce latency for communica�on even
on-chip.

Refined setup: MDtest metadata performance, reduced number of metadata services

Finally, employing only one dedicated NVMe drive per storage server for metadata, thus u�lizing 10% of the
capacity for metadata, led to lower performance than using the distributed par��ons evaluated in this
study.

CONCLUDING REMARKS
This White Paper puts emphasis on evalua�ng BeeGFS on the Arm CPU architecture for the first �me. With
this ini�al evalua�on we have shown that current Arm AArch64 cores for servers can easily max out the
performance of the InfiniBand network and the bandwidth of NVMe drives together with BeeGFS on both
client and storage nodes. We also shed light on the mapping of metadata services onto on-chip NUMA
domains to take advantage of a modern chiplet-based CPU architecture. If the nodes are augmented with
even be�er NICs (or more NICs) and more client nodes are employed, the presented performance results
will scale up further.

BeeGFS 7.3.0 release is fully compa�ble with PAN, Armv8’s “Privileged Access Never” (PAN) feature. Ini�al
tests show no significant change in performance to support this addi�onal layer of security. We switched
the PAN feature off for the presented results in this paper.

In this way, we are looking forward to the Arm ecosystem providing complementary solu�ons for Arm and
BeeGFS users in the future.

References

1. Frank Herold, Sven Breuner: An introduc�on to BeeGFS, ThinkParQ whitepaper, v2.0, 19 pages, June
2018, h�ps://www.beegfs.io/docs/whitepapers/Introduc�on_to_BeeGFS_by_ThinkParQ.pdf

2. Jing Xia, Chuanning Cheng, Xiping Zhou, Yuxing Hu, Peter Chun: Kunpeng 920: The First 7-nm Chiplet-
Based 64-Core ARM SoC for Cloud Services, IEEE Micro, pp. 67-75, Sept./Oct. 2021, h�ps://
ieeexplore.ieee.org/abstract/document/9444893

Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture I White Paper 13

Authors (alphabe�cal):

Philipp Falk, ThinkParQ GmbH

Ma�hias Gries, Huawei Technologies Düsseldorf GmbH

Frank Herold, ThinkParQ GmbH

Qinfei Liu, HiSilicon Technologies Co., Ltd.

Maks Marchenko, ThinkParQ GmbH

Troy Pa�erson, ThinkParQ GmbH

Contact:
info@thinkparq.com

14 White Paper I Performance Evalua�on of the BeeGFS File System on the Arm AArch64 Architecture

	Contents
	EXECUTIVE SUMMARY
	ABOUT THINKPARQ
	ABOUT HUAWEI
	INTRODUCTION
	EVALUATION SETUP
	Hardware Configuration
	Software Configuration
	BeeGFS Configuration
	Management service
	Storage services
	Metadata services
	Client mounts
	BeeGFS parameters
	PERFORMANCE EVALUATION
	Basic network and NVMe drive characteristics
	IOzone N-N test, sequential read and write performance
	IOzone N-N test, random read and write performance
	 IOR N-1 test, sequential read and write performance
	MDtest metadata performance
	CONCLUDING REMARKS
	References
	Authors (alphabetical):
	Contact:

