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ABSTRACT
Parallel File Systems (PFSs) are frequently deployed on leadership
High Performance Computing (HPC) systems to ensure efficient
I/O, persistent storage and scalable performance. Emerging Deep
Learning (DL) applications incur new I/O and storage requirements
to HPC systems with batched input of small random files. This
mandates PFSs to have commensurate features that can meet the
needs of DL applications. BeeGFS is a recently emerging PFS that
has grabbed the attention of the research and industry world be-
cause of its performance, scalability and ease of use. While em-
phasizing a systematic performance analysis of BeeGFS, in this
paper, we present the architectural and system features of BeeGFS,
and perform an experimental evaluation using cutting-edge I/O,
Metadata and DL application benchmarks. Particularly, we have
utilized AlexNet and ResNet-50 models for the classification of
ImageNet dataset using the Livermore Big Artificial Neural Net-
work Toolkit (LBANN), and ImageNet data reader pipeline atop
TensorFlow and Horovod. Through extensive performance charac-
terization of BeeGFS, our study provides a useful documentation
on how to leverage BeeGFS for the emerging DL applications.

1 INTRODUCTION
PFS is one of the most essential building blocks of the persistent
storage stack in large-scale HPC infrastructure. It provides fast
global access to large volumes of data and ensures data persistence
through a high number of distributed storage devices. While there
are many well-known PFSs, like Lustre [13], PanFS [16], Parallel
Virtual File System (PVFS) [26], OrangeFS [15], etc., BeeGFS [4] is
quickly emerging into the HPC community mainly because of its
performance, scalability, and ease of use. For instance, it supports
multiple metadata servers for managing the metadata in a per-
file or per-directory basis. Its frequent development to adapt to
cutting-edge technologies makes it more promising [1, 3, 5, 9].
Even though there have been lots of research contributions on the
evaluation of different PFSs [33, 36, 40, 46–48, 50–52], not many
studies have been performed on BeeGFS. Hence, there is a need
for a systematic I/O characterization and performance analysis of
BeeGFS for both system practitioners and application users who
would like to explore its use on leadership computers.

Meanwhile, the ability of DL applications has been quickly rec-
ognized by the HPC community. Researchers are leveraging the
current HPC facilities with high computation capabilities for dis-
tributed DL training. When conducting training on an HPC cluster,
PFS is commonly used for storing the large volume of datasets. The

DL frameworks, such as TensorFlow [19], Caffe2 [6], MXNet [22],
LBANN [45], etc., invoke file read requests to PFS and form the
mini-batches of data required for successful training. Contrasting
from the traditional well-structured HPC I/O pattern (e.g., check-
point/restart, multi-dimensional I/O access), the DL training phase
gives rise to highly random small file accesses.

The random file access pattern in DL training is mainly required
by the use of Stochastic Gradient Descent (SGD) [2]model optimizer.
The SGD model optimizer requires mini-batches being iteratively
trained in a randomized order. This is important for accelerating the
model’s convergence speed and decreasing the noise learned from
the input sequence. The requirement of randomly shuffled input im-
poses significant pressure to PFSs which are typically designed and
optimized for large sequential I/O. To exploit the best performance
out of big HPC systems, DL training frameworks, like TensorFlow
and LBANN, offer built-in input pipeline for better I/O parallelism.
However, popular image datasets such as ImageNet [25] often have
millions of images each ranging from 100 KB to 200 KB. It is impor-
tant to evaluate the performance of an emerging PFS to judge its
suitability to meet such I/O requirements of DL applications.

In this work, we firstly conduct the evaluation on BeeGFS using
IOR [11] and MDTest [14] for a systematic I/O characterization.
We stress the system by increasing the number of client nodes and
processes per client. Then, we check the resource management
efficiency with different stripe patterns and examine the significant
metadata operations. To analyze the I/O pressure of DL training
workloads, we leverage the real DL applications developed atop
LBANN, TensorFlow and Horovod [44]. In the tests, we use an I/O
tracing tool Darshan [8] to profile the file access pattern when train-
ing AlexNet [32] and ResNet-50 [29] using LBANN with ImageNet
over BeeGFS. Later, we develop and use a data reader pipeline for
importing data through TensorFlow’s Dataset API [18] to perform
further experiments.

In summary, we have made several contributions as listed below.

• Weexamine the composition of input files in largeDL datasets
and the resulting I/O patterns in DL applications, and discuss
their implication to the underlying PFSs on HPC systems.

• We perform an extensive set of experiments for characteriz-
ing the impact of data read/write operations on BeeGFS.

• We thoroughly analyze the metadata performance and make
recommendations on organizing data for better throughput.

• We report our observations in the context of DL application
workloads and discuss the suitability of BeeGFS in enabling
DL applications.



2 BACKGROUND
In this section, we briefly discuss the architecture of BeeGFS and the
functionalities of its basic building blocks. Then, we introduce data
pipeline in the DL frameworks used for the experiments. Finally,
we discuss the challenges posed by DL applications to PFSs.

2.1 BeeGFS Software Architecture
As shown in Fig. 1, BeeGFS is mainly composed of four system
components.
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Figure 1: A sketch of BeeGFS architecture

2.1.1 Management Server (MS). There can be exactly one MS in
a BeeGFS configuration. It keeps track of the connectivity infor-
mation and makes sure all the services and targets can find each
other during the initial setup. It maintains a list of information, e.g.,
network status, storage capacity, etc., on all the components of the
file system.

2.1.2 Metadata Server (MDS). MDS provides a multi-threaded ser-
vice that manages information about the object data. These meta-
data information contain the access permission, directory infor-
mation, file and directory ownership, and the location of user file
contents on storage target. OneMDS can have exactly oneMetadata
Target (MDT) where one metadata entry is created per file.

BeeGFS supports Scalable Metadata Management. Each MDS
is designed to operate an exclusive portion of the entire file sys-
tem namespace. BeeGFS maintains a global tree for keeping the
information of MDSs. Each node of this tree represents a file or a
directory. A node corresponding to a directory contains the infor-
mation about the MDSs that hold its subdirectories. Hence, even
though there can be an unlimited number of MDSs in the system,
the directory structure can be traversed efficiently. This design
decision for metadata management can facilitate the scalability of
metadata operations, e.g., file stat, open and close to read/write, file
creation, etc., (see Section 4.4).

2.1.3 Object Storage Server (OSS). Each OSS hosts the file contents
in one or many Object Storage Targets (OST). OST is generally a
RAID-set with any POSIX compliant and Linux distribution sup-
ported file system (xfs, ext4, zfs, etc.) on top. Each OSS manages
the striping of data and strives to maximize bandwidth via paral-
lelization while maintaining data consistency.

2.1.4 File System Client (FSC). FSC is the kernel module which
facilitates the usage of BeeGFS from the hosts that have installed
BeeGFS clients. It includes a service, beegfs-client, which loads
and exposes the client kernel module for the users.

2.2 Data Pipeline in DL Frameworks
2.2.1 LBANNData Pipeline. LBANN [45] is a neural network toolkit
under active development at Lawrence Livermore National Labo-
ratory (LLNL). It targets at increasing capability of exploiting the
parallelism opportunity offered by large-scale HPC facilities. For
model parallelism, it leverages an MPI+Threads framework with
node-local thread-level parallelism through Intel BLAS library [10]
for distributed processing and communication. For data parallelism,
it allows fetching mini-batches in parallel from PFSs or node-local
storage. When reading datasets, LBANN has several data readers to
parse different dataset formats. These include the readers for raw
images, CSV files, etc.

LBANN maintains a map of three data readers for training, vali-
dation and testing purposes. First, it instantiates the data readers
based on the dataset and populates the map. Then, it loads the file
path and the labels in another map. Afterward, LBANN instantiates
a model abstraction where it sets all parameters for loading data,
e.g., the number of parallel data readers, the list of input layers,
number of mini-batches, etc. This model is kept as a member of
each data reader module. At the beginning of each epoch, a list of
indices is shuffled and input layers are constructed. The information
about each file, i.e., file path and label, can be accessed from the map
through these indices. When an input layer is constructed, it calls
the fetch_data function from an input I/O buffer manager. There
is another function fetch_datum defined in each dataset specific
data reader. This function is invoked from fetch_data for each file
through OpenMP multi-threading to read the mini-batch assigned
to a parallel data reader. At the end of the pipeline, fetch_datum
requests the underlying PFS for reading file one by one.

2.2.2 Importing Data in Distributed TensorFlow. TensorFlow [19]
is one of the most popular end-to-end open source platform for
machine learning developed by Google. It provides rich API sets
for developing deep learning applications. Meanwhile, Uber devel-
oped Horovod [44], which is a distributed training framework for
TensorFlow, Keras [12], PyTorch [17], and MXNet. It has collective
operation support via both MPI and NVIDIA Collective Communi-
cation Library (NCCL) for parallel communication.

In order to develop an input pipeline for distributed training,
we can use Horovod for initializing MPI and sharding the data
according to the communicators’ size and rank. Thus, each node
in the distributed system gets equal portion of data to read from
PFS into memory. On the other hand, TensorFlow’s Dataset API
tf.data [18] can be leveraged as a module for importing data dur-
ing the training phase. It has the provision of iteratively sharding,
batching, and optionally shuffling the dataset. Moreover, it has the
support for adding custom file reader function through map_func
parameter in the tf.data.Dataset.mapmethod. In addition, there
are some built-in functions in TensorFlow, e.g., tf.read_file,
tf.image.decode_image, etc., for reading and decoding common
file formats like image files.

2.3 Challenges of Reading Datasets from PFSs
Most of the DL frameworks are equipped with built-in data pipeline
for supporting distributed training with different dataset formats.
For example, CIFAR10 format, TensorRecord format, and raw image
(e.g., .jpg) are all allowed in TensorFlow. Different dataset formats
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and sizes engender distinct I/O workloads on storage systems. Gen-
erally, PFSs are designed for efficiently reading large batched files
rather than importing a massive number of small files in random
order. Hence, DL applications can put significant challenges on
PFSs while importing data for training. Particularly, dataset size
and randomness of file access patterns are some critical reasons
behind these challenges.

2.3.1 Dataset Size. A training dataset has to be read entirely at
every epoch. So, the performance difference between reading large
and small datasets becomes more noticeable when reading from
PFSs in distributed training on clusters. A small dataset is easily
cached by the PFS after the first epoch. Afterward, the small dataset
is always read from the cache of PFS, which largely accelerates
the dataset reading speed. While reading a huge dataset, read re-
quests to physical backend devices may frequently happen, since
the dataset cannot fit entirely in the PFS’s cache. These frequent
I/O requests to read all the data from a large dataset at each epoch
lead to relatively slower I/O performance than that for smaller
datasets [24, 53].

2.3.2 Random File Access. The read pattern in DL frameworks can
lead to distinguishable I/O throughput. For instance, randomization
of the input sequences is mandatory at the beginning of each epoch
to facilitate the training parameters’ convergence speed and avoid
bias from input order. Although some frameworks (e.g., TensorFlow)
support local shuffling after sequentially reading a few elements
from a batched file, randomly reading small raw images is a general
practice to ensure the randomization of an input sequence. These
massive small random reads impose non-trivial performance loss
compared to sequential reads of large batched files [24, 53].

3 SYSTEM CONFIGURATION AND
WORKLOADS

In this section, we describe the system configuration and software
tools we use for the experimental evaluation.

3.1 BeeGFS Configuration
All the experiments are run on the Catalyst cluster [7] , an HPC
system capable of 150 TeraFlops/sec. It has 324 nodes with 48 cores
per login and 24 cores per compute node. Each compute node is
equipped with two 12-core Intel Xeon E5-2695v2 processors, 128 GB
(41.5 TB in total) dynamic random access memory (DRAM) and
800 GB of non-volatile memory (NVM).

Catalyst is equipped with a BeeGFS-7.1.2 setup with 338 TB total
capacity that consists of both SSD and HDD devices underneath as
depicted in Figure 2. It has 12 server hosts connected via QLogic
Infiniband QDR interconnect, and 12 object storage server (OSS)
and 36 metadata server (MDS) processes equally distributed among
the hosts. Each OSS manages two object storage targets (OST)
each having 15 TB space on 4 HDDs with ZFS RAID-Z formatting
and 721 GB ZFS intent log (ZIL) on SSDs, and Level 2 Adjustable
Replacement Cache (L2ARC) log on DRAM devices for caching.
Each MDS handles one MDT having 721 GB space on 4 SSDs with
ZFS RAID-Z formatting.

Figure 2: BeeGFS configuration on Catalyst

3.2 Software Tools
We use IOR [11] and MDTest [14] for data and metadata perfor-
mance analysis respectively. Apart from that, for evaluating the
impact of DL workload on BeeGFS, we use AlexNet [32] and ResNet-
50 [29] implemented on LBANN that use ImageNet dataset stored
in the BeeGFS mount point on Catalyst. Moreover, we develop an
input pipeline using TensorFlow and Horovod for importing the
same dataset, and perform further experimentation.

3.2.1 Interleaved-Or-Random (IOR). We use IOR-2.10.3 to evaluate
the I/O bandwidth of BeeGFS. During the tests, we use MPIIO API
for generating the N-N and N-1 workloads. We also enable random
inter-file access across all process to alleviate client-side caching.
In all the experiments, the aggregated test file size is 240 GiB. The
default transfer size is 1 MiB if not explicitly mentioned.

3.2.2 MDTest. We use MDTest-1.9.3 to perform file create, stat
and read. We emulate the effect of flat directory and single-depth
hierarchical directory for N-N workload across multiple clients
with 8 processes per client while keeping the total number of files
to 409600.
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Figure 3: LBANN ImageNet data reader I/O pattern
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3.2.3 LBANN Benchmarks. For evaluating the impact of DL appli-
cations on BeeGFS, we train LBANN’s AlexNet [32] and ResNet-
50 [29] over ImageNet dataset. We set the stripe size to 512 KB and
stripe count to 4. In the tests, we increase the number of clients from
4 to 32 for both the models. We run the tests with Darshan-3.1.7,
which is a well-established tool for HPC I/O tracing and charac-
terization [20, 21, 37, 38]. From the Darshan logs, we collect the
file access patterns posed by the ImageNet data reader module in
LBANN. As shown in Figure 3(a), POSIX file seek operation has
the most count in total, because LBANN calls it to measure the file
size for initializing the memory buffer to keep the data. Besides, file
open and read have reasonable overhead. This pattern demonstrates
what happens when an application tries to read from millions of
small files from a PFS. Besides, Figure 3(b) depicts that, when access-
ing the ImageNet dataset by LBANN, most of the POSIX operations
on a file are around 100 KB size.
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Figure 4: TensorFlow ImageNet data reader I/O pattern

3.2.4 TensorFlow Input Pipeline. In the case of TensorFlow ex-
periments, we keep the same BeeGFS stripe pattern as that for
LBANN benchmarks and utilize the same measurement tools. From
LBANN results, we observe that training phase does not have much
impact on the data import stage in Deep Learning applications.
Hence, instead of running the entire training process, we run the
input pipeline that we develop for reading the ImageNet dataset
using Dataset API [18] in TensorFlow-1.10.0. Moreover, we lever-
age Horovod-0.16.1 [44] for implementing a distributed TensorFlow
data pipeline. As depicted in Figure 4(a), file open and read invokes
most of the I/O overhead. On the contrary to LBANN input pipeline,
the TensorFlow pipeline introduces a large amount of tiny POSIX
reads when tf.read_file API is used as shown in Figure 4(b).
This phenomenon makes the application read less amount of data
while the metadata overhead for file reading remains the same.

For developing a simplistic input pipeline, we configure the Ten-
sorFlow session with six inter-operation parallelism threads and
one intra-operation parallelism thread for leveraging multithread-
ing within TensorFlow. Then we populate two pairs of lists with
the file paths and corresponding labels from train.txt and val.txt
file in the ImageNet dataset. Later, we create two Tensor dataset
instances with the lists of files and corresponding labels. We con-
figure the dataset with a shuffle buffer size of 10 files, and assign
equal shards of data file list and label list across all Horovod ranks.
We attach a file reader function with the dataset’s map_func and

set num_parallel_calls to 4 for efficient reading. In this func-
tion, the tf.read_file is used to read each file into memory and
tf.image.decode_image method is used to decode the file con-
tents.

4 I/O CHARACTERIZATION OF BEEGFS
In this section, we present the evaluation results and perform a
step-by-step analysis of BeeGFS I/O and metadata performance.
The purpose of these synthetic experiments is to test the different
aspects of the PFS by increasing the process number for single
node and varying the striping pattern to explore the I/O perfor-
mance trend. Then, we run scalability tests via increasing client
nodes while keeping the other parameters (e.g., number of client
processes, stripe size and count) fixed to the best options from the
single node tests. Afterward, we discuss the observations from the
experiments done by varying transfer sizes for a fixed number of
clients, processes per client and striping pattern. Finally, we run
some experiments to test the metadata handling performance for
critical operations, like file stat, read and create.

4.1 Single Client Test
The single node BeeGFS tests are performed by varying the number
of client processes from 1 to 24 while changing the stripe count
from 1 to 8 for stripe size 256 KB, 512 KB, and 1 MB. We choose
stripe size 512 KB as the representative to demonstrate the trends
in the other two stripe sizes. To better distinguish the performance
difference, we select 4, 6, 8 processes per node to rerun the extensive
tests by changing the stripe count from 4 to 24 for stripe size 512 KB.
In the experiments, we examine file-per-process (N-N) read/write
and single-shared-file (N-1) read/write bandwidth.

4.1.1 Increasing Number of Processes Per Client. For both N-N read
and write, shown in Figure 5(a) and Figure 5(b) respectively, the
bandwidth steeply increases when the stripe count increases from 1
to 2 but with increasing stripe counts greater or equal to 2, the band-
width does not increase much. N-N read bandwidth displays good
stress handling from 1 till 4 processes per client, then it decreases
slowly with increasing number of processes. Network bandwidth
saturation can be the possible reason behind this performance trend.
Moreover, the write bandwidth peak (i.e., 1.8E3 MiB/s) is more than
that of read bandwidth (i.e., 1.33E3 MiB/s). We find this kind of per-
formancemeasures after incorporating RAID-Zwith ZIL. Hence, for
single client write-intensive applications, employing RAID-Z with
ZIL on SSD devices can be efficient in spite of the existence of HDD
OSTs and L2ARC caching for reading as depicted in Section 3.1.

In N-1 read and write tests, as depicted in Figure 5(c) and Fig-
ure 5(d) respectively, the bandwidth almost doubles when the stripe
count is increased from 1 to 2, as it leverages the bandwidth from
additional OSTs. Finally, it reaches the peak (i.e., 1.27E3 MiB/s) for
stripe count 6 and 6 processes per node. The highest N-1 write
bandwidth (i.e., 1.17E3 MiB/s) is reached for stripe count 6 and 1
process per node. So, N-1 write almost always suffers from addi-
tional processes. Nevertheless, Both read and write bandwidths
remain reasonable for stripe count 4 and upwards.

4.1.2 Increasing Number of OSTs. We analyze the results described
in Section 4.1.1 and select 4, 6 and 8 processes per node for further
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Figure 5: I/O bandwidth for varying number of processes per node
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Figure 6: I/O bandwidth for varying stripe count

investigation. We increase the number of stripe counts from 4 to
24 while keeping the stripe size fixed at 512 KB. We run the single
node BeeGFS test in order to perceive the behavior in the simplest
case first. Then, we strain the client to analyze the upper bound
and best cases. As depicted in Figure 6, the variability of the N-N
or N-1 read/write bandwidth is not much distinct while changing
stripe count or the number of active OSTs per operation.

For N-N read, the bandwidth increases with the increasing pro-
cess count per node, which is relatable to Figure 5(a) plot. As
shown in Figure 6(a), N-N read bandwidth reaches the peak (i.e.,
1.28E3 MiB/s) for stripe count 12 and 8 processes per node. We
observe that the bandwidth can benefit more from the underlying
hardware layout when the stripe count is equal to the total number
of OSSs on Catalyst. For N-1 read, as shown in Figure 6(c), the
bandwidth is higher for more processes per node. As stated in Fig-
ure 6(d), the bandwidth is good for stripe count 12 when compared
with the other values for the same workload. Although the highest
bandwidth (i.e., 918.13 MiB/s) is obtained for 4 processes per node
and stripe count 4, it is not much higher than the peaks we get for
stripe count 12 with 6 processes per node (i.e., 897.54 MiB/s) and 8
processes per node (i.e., 910.48 MiB/s). On an average, according
to Figure 6(b) and Figure 6(d), N-1 write bandwidth is almost half
of that for N-N write. All in all, the bandwidth change for varying
stripe count is negligible.

4.2 Scalability
From the insights we get from the experiments discussed in Sec-
tion 4.1, we extend the research to analyze the scalability behavior
of BeeGFS by increasing the number of client nodes from 2 to 24.
We select 4 and 8 process count per node as candidates for further

study instead of performing exhaustive experimentation. We in-
crease the stripe count from 4 to 16 and 8 to 48 for N-N and N-1
workloads respectively. We examine with more stripe count for N-1
workloads than that for N-N, because N-1 workloads are supposed
to put more resource contention in case of increasing stripe count.
It allows us to create more pressure on the system. The experiments
with 8 processes per node generally performed better than others
according to the discussion in Section 4.1 and plots depicted in
Figure 6. Hence, we take the results for 8 processes per client and
keep the stripe size at 512 KB.

For N-N read, as plotted in Figure 7(a), BeeGFS shows excellent
scalability, as the bandwidth increases with the increasing number
of clients, almost linearly till 8 clients. The stripe count of 12 de-
livers the best bandwidth, reaching the peak (i.e., 16.26E3 MiB/s)
for 16 clients. As stated in Figure 7(b), N-N write bandwidth shows
good scalability like N-N read. It reaches the culmination (i.e.,
11.08E3 MiB/s) for 24 clients and stripe count of 12.

According to Figure 7(c), N-1 read bandwidth demonstrates good
scalability, as the bandwidth usually increases with the increasing
number of clients. In this case, stripe count 12 performs better than
stripe count 16, but with increasing stripe count (e.g., 32 and 48) the
data management overhead is overcome by leveraging the extra
amount of aggregate bandwidth provided by the additional storage
devices. Hence, the bandwidth reaches the peak (i.e., 12.34E3 MiB/s)
for stripe count 48 and client count 24. For N-1 write, as depicted
in Figure 7(d), the bandwidth increases with more clients usually,
reaching the highest value (i.e., 6.09E3 MiB/s) for stripe count 48
and client count 24 with 8 processes per client. We observe that 48
is a multiple of 12 and the bandwidth gain for involving 36 extra
OSTs is not that much. Besides, N-1 write bandwidth is almost half

5



2 4 6 8 16 24
Number of Clients

0

2000

4000

6000

8000

10000

12000

14000

16000

Ba
nd

wi
dt

h 
(M

iB
/s

)

Stripe Count 4
Stripe Count 8
Stripe Count 12
Stripe Count 16

(a) N-N Read

2 4 6 8 16 24
Number of Clients

0

2000

4000

6000

8000

10000

12000

14000

16000

Ba
nd

wi
dt

h 
(M

iB
/s

)

Stripe Count 4
Stripe Count 8
Stripe Count 12
Stripe Count 16

(b) N-N Write

2 4 6 8 16 24
Number of Clients

0

2000

4000

6000

8000

10000

12000

14000

16000

Ba
nd

wi
dt

h 
(M

iB
/s

)

Stripe Count 8
Stripe Count 12
Stripe Count 16
Stripe Count 32
Stripe Count 48

(c) N-1 Read

2 4 6 8 16 24
Number of Clients

0

2000

4000

6000

8000

10000

12000

14000

16000

Ba
nd

wi
dt

h 
(M

iB
/s

)

Stripe Count 8
Stripe Count 12
Stripe Count 16
Stripe Count 32
Stripe Count 48

(d) N-1 Write

Figure 7: I/O bandwidth for varying number of clients

of N-N write, but N-1 read performance is not that much less than
N-N read.

4.3 Varying Transfer Sizes
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Figure 8: I/O bandwidth for varying transfer sizes
To analyze the I/O response of BeeGFS into a more microscopic

level, we add this experiment set to evaluate the N-N and N-1
read/write bandwidth for varying transfer sizes. We keep the num-
ber of clients fixed at 16 and the number of processes per client
constant at 8.

As demonstrated in Figure 8(a), the N-N read bandwidth starts
from 3.56E3 MiB/s for 16 KiB transfer size and gradually increases
to 8.43E3 MiB/s for 128 KiB. It reaches a secondary peak for 256 KiB
and stays flat till 1024 KiB that finally reaches the peak (i.e., 13.13E3
MiB/s) for 2048 KiB transfer size. Again, N-1 read bandwidth re-
mains in the range of 2.24E3 MiB/s for 16 KiB and 4.51E3 MiB/s
for 2048 KiB transfer size.

According to Figure 8(b), we observe a smooth increment of N-N
write bandwidth for varying transfer sizes that saturates at 512 KiB.
For instance, the bandwidth is 3.77E3 MiB/s for 16 KiB transfer
size, which almost doubles to 6.04E3 MiB/s for 32 KiB. Then it
slowly increases to 6.99E3 MiB/s for 128 KiB and reaches the peak
at 8.92E3 MiB/s for 1024 KiB transfer size. On the other hand, the
N-1 write bandwidth decreases from 2.11E3 MiB/s for 32 KiB to
1.5E3 MiB/s for 512 KiB through 1.61E3 MiB/s for 128 KiB transfer
size. Then it increases again to 2.19E3 MiB/s for 2048 KiB.

Both read and write bandwidths for N-N workload show better
performance trends than that for N-1. This event again recommends
avoiding N-1 workload invocation in DL applications. Another
notable aspect of these experiments is the demonstration of low
bandwidth for lower transfer sizes. This situation creates a plot

for us to expect even lower I/O bandwidth for DL I/O workloads,
where we often need to deal with thousands of small sized files of
around 100 KiB per application process.

BeeGFS I/O Observation 1: N-N workload is almost always bet-
ter than N-1. As discussed in Section 4, all the experimental results
demonstrate that N-N workload is always better than N-1 work-
load on BeeGFS. Although N-1 read bandwidth is sometimes close
to N-N read, N-1 write bandwidth is very low in comparison to
N-N write bandwidth. On the other hand, the correlation between
N-N and N-1 read suggests the presence of a good file read con-
sistency handling mechanism in BeeGFS. For DL applications on
HPC systems, we seldom face N-1 read overhead by reading file
lists or labels per file, but there is a chance that N-1 write can be
invoked by the developers for logging and checkpointing. We want
to recommend assigning a single DL application process for writing
the log or checkpointing files instead of involving all the processes
to avoid N-1 write workload and leverage BeeGFS in an effective
manner.

BeeGFS I/OObservation 2: Increasing stripe count is not always
necessary. It might be a general perception that we need to add
more OSTs by increasing the stripe count in BeeGFS to get better
throughput. It might not always be considered as a proper decision,
as adding up more active OSTs adds communication overhead. Our
experiments stated in Section 4.1.2 suggest that we cannot take
much benefit from the additional OSTs when we increase the stripe
count. From our observations, we find that a stripe count of 4 is
reasonable enough to get a good read/write bandwidth while having
a cost-effective resource utilization.

4.4 Characterization of Metadata Operations
We collect results for scale-out evaluations using MDTest with 4 to
128 clients having 4, 8 and 16 processes per client. Besides, we vary
the BeeGFS stripe count from 4 to 48 for stripe size 512 KB. We
run experiments for analyzing the performance of file stat, read,
create and remove, and tree create and remove operations. The
file stat, read and create operations are the most important
ones in the training phase of the DL applications, because, during
this phase, the applications check the stat of the files, read them
from the underlying PFS and create files for checkpointing. In this
case, the measurement of read operation actually measures the
cost of opening a file, reading 1 B and closing the file, hence it
covers the file open and close operations in general.

6



For flat directory metadata performance evaluation, we perform
the operations on files in a single directory. When testing the perfor-
mance for hierarchical directory structure, we uniformly distribute
the files among all the processes involved and keep the files assigned
to each task in a dedicated directory under the parent directory.
Besides, we analyze the results by operations on a single file shared
by all the involved processes. In this section, we discuss the perfor-
mance of file stat, read and create for flat directory, hierarchical
directory and single shared file by describing the trends shown in
Figure 9. We describe the operations per second (ops/sec) perfor-
mance for each metadata operation presented in logarithmic scale
while varying the number of clients with 8 processes per client,
512 KB stripe size, 4 stripes, and 409600 total files.

4.4.1 File Stat Performance. Any file I/O access requires file stat
operation at least for checking the access level of the respective file.
As depicted in Figure 9(a), we observe good scalability for file stat
operation for flat and hierarchical directory structure, but this oper-
ation does not perform as well for the single shared file. For flat di-
rectory structure, the performance of file stat rises till 16 clients in-
creasing from 5.13E3 ops/sec for 4 clients to 11.47E3 ops/sec for 16
clients, but saturateswith increased client count staying in the range
of 11E3 to 12E3 ops/sec. On the other hand, the performance of file
stat is better for hierarchical directory structure. For instance, it
increases from 4.55E3 ops/sec for 4 clients to 14.05E3 ops/sec for 16
clients and finally reaches to 15.65E3 ops/sec for 128 clients. On the
contrary, for single shared file, the performance value starts from
2.57E3 ops/sec for 4 client nodes and increases to 4.29E3 ops/sec
for 16 clients. Afterward, it gradually decreases to 1.47E3 ops/sec
for 128 clients.

4.4.2 File Read Performance. The metadata operations involved in
file read, i.e., file open and close, are the ones that are invoked the
most during the training phase of DL applications. As presented
in Figure 9(b), for flat directory structure, file read keeps itself in
the range of 2.3E3 ops/sec to 2.84E3 ops/sec. Similar to the perfor-
mance of file stat, for hierarchical directory structure, file read
operation displays better performance than the others. For instance,
it has impressive performance measures of 4.64E3, 13.94E3 and
15.29E3 ops/sec for 4, 16 and 128 clients respectively. In this case,
the single shared file results show good scalability which is slightly
better than flat directory structure, as file read operation gains
1.66E3 ops/sec for 4 clients and grows up to 3.22E3 ops/sec for 64
clients and slightly drops to 3.12E3 ops/sec for 128 clients. Even
though the single shared file workload is effectively handled by
BeeGFS with increasing number of clients involved, when design-
ing DL applications to import the dataset from BeeGFS, it is a good
idea to avoid single shared file accesses and lessen process con-
tention. We recommend arranging the dataset in a hierarchical
directory structure in order to leverage the metadata performance
acceleration.

4.4.3 File Creation Performance. File create operation is partic-
ularly important in case of checkpointing and logging in DL ap-
plications. According to Figure 9(c), for the experiments on flat
directory structure, ops/sec increases with the increasing number
of clients, but the increment is not sufficient to claim that it demon-
strates a good scale-out performance trend. In this case, the value

is 1.31E3 ops/sec for 4 clients and increases up to 1.49E3 ops/sec
for 128 clients. As usual, for hierarchical directory structure, file
create operation performance grows better from 4.58E3 ops/sec
for 4 clients to 13.38E3 ops/sec for 16 clients. Then with increasing
number of clients, it almost saturates, rendering 15.27E3 ops/sec
for 128 clients. Single shared file create performance is nominally
better than flat directory structure. In particular, it displays good
resource management along with slight scalability factor as the
performance gradually increases from 1.7E3 ops/sec for 4 clients to
3.5E3 ops/sec for 128 clients. The results on a single file shared by
all the involved processes show reasonable trends that demonstrate
good process contention handling in BeeGFS as the ops/sec does
not change much or generally increases with the increasing num-
ber of clients. Similar to file stat and read, file create operation
performs the best for hierarchical directory structure.

BeeGFS Metadata Observation: Hierarchical file organization
is beneficial to metadata management. The metadata operations’
characterization has shown very interesting insight on data arrange-
ment. When we perform tests on hierarchical directory structure,
we can see a clear benefit for all metadata operations important
for DL workload. In DL application’s perspective, we think if the
dataset can be arranged hierarchically distributed through different
directories in BeeGFS instead of keeping all the files in a single
flat directory, the obvious metadata operations like stat, open and
close can take advantage of the scalable metadata management
design in BeeGFS.

5 PERFORMANCE EVALUATION OF DEEP
LEARNING APPLICATIONS

With a view to analyzing the behavior of I/O during the training
phase of different DL applications, we consider two convolutional
neural network models named AlexNet [32] and ResNet-50 [29]
on top of LBANN. Later, we run experiments using a distributed
ImageNet input data pipeline developed using TensorFlow and
Horovod. We perform these tests using the ImageNet dataset kept
on BeeGFS mount point in Catalyst cluster. For these experiments,
we choose the stripe size of 512 KB and stripe count of 4 for the
dataset. We increase the number of nodes involved in running the
models from 4 to 32 while keeping the number of processes per
node fixed at 8. We collect the average cumulative time per process
for file read and metadata operations, and the average data read by
each process from Darshan traces. We deduce the total data read
and divide it with the total I/O time, i.e., read time + metadata time,
to estimate the parallel I/O bandwidth.

5.1 LBANN Benchmark Results
5.1.1 AlexNet. Figure 10(a) shows that the parallel read bandwidth
on BeeGFS invoked by AlexNet on LBANN is overall good, but it
does not scale efficiently with increasing number of clients. We
observe that, although the average cumulative file read time re-
ported by Darshan decreases with an increasing number of nodes,
the metadata retrieval time does not drop. The overall data reading
bandwidth cannot scale-out with increasing number of clients, be-
cause metadata handling becomes the bottleneck. For instance, the
read time decreases smoothly from 73.76 seconds to 9.7 seconds
when the number of clients increases from 4 to 32. On the other
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Figure 9: Metadata performance for varying number of clients
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Figure 10: I/O latency and read bandwidth of LBANN Bench-
marks

hand, the metadata time ranges between 35.92 and 70.12 seconds
for 4 and 16 clients respectively. Hence, The estimated read band-
width increases slowly from 3.71E3 MiB/s to 6.5E3 MiB/s when the
number of clients is increased from 4 to 24 and lessens a little bit to
6.4E3 MiB/s for 32 clients.

5.1.2 ResNet-50. Similar to AlexNet I/O bandwidth, ResNet-50
shows good read bandwidth trend as shown in Figure 10(b). The
bandwidth is accordingly governed by the metadata time and keeps
itself in a reasonable boundary, while the read time decreases with
increasing clients. In particular, the read time decreases from 72.86
to 9.72 seconds when the number of clients increases from 4 to 32.
The metadata resides in the range of 27.17 seconds for 4 clients
to 73.48 seconds for 12 clients. The bandwidth increases from
4.07E3 MiB/s to 8.28E3 MiB/s when the number of clients increases
from 4 to 24, with a decrement to 3.97E3 MiB/s for 12 clients. Again,
the bandwidth decreases to 7.45E3 MiB/s for 32 clients.

LBANN Observation 1: BeeGFS can reasonably handle the I/O
pattern posed by LBANN. When we compare the bandwidth results
shown in Figure 10 with that in Figure 7(a), we find that the I/O
pattern of DL applications’ training phase can be handled well
by BeeGFS. For N-N read tests, there is one large file per process
workload. For DL applications on LBANN, one data reader thread
has to read thousands of files per epoch. This phenomenon creates
a great deal of metadata overhead, and BeeGFS can feasibly handle
this situation. Overall, the bandwidth stays between one-third to
half of what we reported in Figure 7(a) for tests with IOR.

LBANN Observation 2: The directory structure of ImageNet
dataset assists the performance of BeeGFS. Files in the ImageNet
dataset are by default arranged in a hierarchical directory structure.

From Figure 8(a), we can observe that lower transfer sizes have
negative impact on the N-N read bandwidth. Although the most
popular file size of ImageNet dataset is around 100 KB, as depicted
in Figure 3(b), and the metadata overhead is supposed to increase
more with increasing clients because of contention, the directory
structure of ImageNet helps contain the metadata overhead in a
reasonable range. The observations in Section 4.4 suggests a similar
trend.

5.2 Tensorflow Benchmark Results
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Figure 11: I/O latency and read bandwidth of ImageNet data
reader pipeline on TensorFlow

5.2.1 ImageNet Data Reader Pipeline. As depicted in Figure 11,
the internal file read optimization in TensorFlow helps lessen the
average read time while the metadata overhead remains high. Ac-
cording to the Darshan traces, the total amount of data read is
proportional to the total number of processes involved in the appli-
cation, i.e., less data is read for a lower number of processes. This
situation renders the experiment as a weak scaling test. Hence, the
bandwidth calculated by dividing the total data by the summation
of read and metadata time appears very low in comparison to the
bandwidth reported in LBANN benchmarks. For instance, read time
slightly decreases from 2.28 seconds for 4 nodes to 1.95 seconds
for 32 nodes. On the other hand, the metadata operation latency
increases from 83.74 seconds for 4 nodes to 133.71 seconds for 32
nodes. Consequently, the read bandwidths are reported as 124.75,
467.39 and 624.33 MiB/s for 4, 16 and 32 nodes respectively.

TensorflowObservation 1: TensorFlow offers internal optimiza-
tions for file reading by default. According to the Darshan logs,
when the tf.read_file method is used in the file reader function
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mapped through Dataset API’s Python wrapper, the application
reads small portions of the file rendering the data pipeline with a
lot of tiny POSIX I/O accesses as shown in Figure 4(b). Besides, the
total amount of data read is increased with more resources, so the
bandwidth increases with additional application nodes.

Tensorflow Observation 2:Metadata handling is a notable bot-
tleneck in TensorFlow data pipeline.While TensorFlow optimizes file
read time by lessening the read access size, the metadata overhead
still remains the same, because the files are required to be opened
anyway. Hence, metadata handling stays as the main bottleneck in
the data import pipeline. Eventually, it hampers the overall through-
put of BeeGFS due to massive number of tiny read requests of less
than or equal to 100 B, (see Figure 4(b)).

6 RELATEDWORK
There have been many efforts in the HPC community to character-
ize and analyze different performance metrics of various compo-
nents in supercomputing infrastructure. Notably, a large body of
literature is available on the performance analysis of the PFSs such
as Lustre. For instance, Yu et al. [51] perform thorough characteri-
zation of data and metadata I/O scalability trends of Lustre atop a
Cray XT supercomputer named Jaguar at Oak Ridge National Lab-
oratory, followed by different tuning and optimization techniques
on scientific applications to leverage the system. Besides, there has
been another case study by Yu et al. [50] on the performance of
Lustre over Quadrics and InfiniBand using sequential and parallel
I/O, metadata and application benchmarks. While quite a number
of recent studies [33, 36, 40, 46–49, 52] have demonstrated different
techniques to evaluate the I/O performance of PFSs in supercomput-
ing facilities, many other studies [34, 39, 43] have emphasized on
PFS, application and data API tuning and optimization to acquire
better I/O throughput on HPC systems. Although many research
attempts have been taken for I/O performance analysis of differ-
ent PFSs, there is a lack of understanding on the characteristics of
BeeGFS I/O and metadata performance, particularly its capability
of handling the workloads posed by DL applications.

In recent times, the emergence of DL in solving real-world prob-
lems has given rise to the significance of analyzing the perfor-
mance of DL applications’ workflow. For example, recent stud-
ies [27, 28, 30, 31, 35] have documented the results on the evalua-
tion of different DL applications on different HPC systems, but all
of these mainly deal with the computation characterization. There
have been some mentionable efforts [23, 24, 41, 42, 53, 54] on I/O
profiling and optimization for DL training workloads. Among them,
Zhu et al. [53] have used BeeGFS as one of the baseline PFS for the
comparison with the DeepIO implementation. Besides, there are
some white papers from ThinkParQ discussing the performance
trends of BeeGFS, but those do not evaluate its capability of han-
dling DL applications. Hence, to the best of our knowledge, our
paper is the first one to carry out an organized study on the char-
acterization of BeeGFS performance trends and the suitability of
this PFS for handling I/O workloads generated by DL applications’
training phase.

7 CONCLUSION
We have taken the opportunity to explore different aspects of
BeeGFS and mainly focused on its suitability for workloads posed
by DL applications and frameworks. We have conducted a micro-
scopic analysis of data and metadata I/O performance on BeeGFS
and summarized our observations. We have pinpointed the efficacy
of BeeGFS in handling N-N workloads and determined a reasonable
striping pattern for balancing resource utilization and performance.
Our results from the metadata benchmark have demonstrated the
benefit of maintaining hierarchical file organization. In addition,
we have leveraged DL applications built on top of LBANN and
distributed TensorFlow to evaluate the impact of DL I/O patterns
on the performance of BeeGFS. We have reported that, even though
data pipelines in DL frameworks can put tremendous pressure on
PFS, BeeGFS reasonably handles the I/O access patterns posed by
the DL application benchmarks. Overall, our study offers a useful
document for the HPC users who are perusing BeeGFS, especially
for handling workload invoked by DL applications.

In the future, we plan to extend the evaluation with more in-
depth analysis on I/O workloads posed by TensorFlow applications.
Besides, we will try different types of datasets and explore the Ten-
sorFlow Dataset API more intuitively. We also aim at exploring the
latest Storage Pool feature in BeeGFS for handling heterogeneous
storage stack and features like buddy mirroring for built-in reliabil-
ity. BeeGFS On Demand (BeeOND) used for managing burst-buffers
is another promising attribute for further study.
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